Encyclopedia  |   World Factbook  |   World Flags  |   Reference Tables  |   List of Lists     
   Academic Disciplines  |   Historical Timeline  |   Themed Timelines  |   Biographies  |   How-Tos     
Sponsor by The Tattoo Collection
Kilogram
Main Page | See live article | Alphabetical index

Kilogram

The kilogram (symbol: kg) is the SI base unit of mass. A gram is defined as one thousandth of a kilogram. See orders of magnitude (mass) for comparisons with other masses.

Table of contents
1 Multiples
2 Definition
3 Proposed future definitions
4 External links

Multiples

SI prefixes are used to name multiples and subdivisions of the kilogram. The most commonly used ones are:

tonne = 1 000 kilograms (strictly speaking, this should be named megagram, but the name is rarely used) (not to be confused with the US short ton, 2000 pounds or about 907 kilograms)
gram = 1/1 000 kilogram
milligram = 1 thousandth of a gram
microgram = 1 millionth of a gram (ie. 10-6 gram)

Definition

The kilogram is the only one of the SI units which is still defined in relation to an artifact rather than to fundamental physical properties.

The kilogram was originally defined as the mass of one litre of pure water at a temperature of 4 degrees Celsius and standard atmospheric pressure. This definition was hard to realize accurately, partially because the density of water depends ever-so-slightly on the pressure, and pressure units include mass as a factor, introducing a circular dependency in the definition of the kilogram.

To avoid these problems, the kilogram was redefined as precisely the mass of a particular standard mass created to approximate the original definition. Since 1889, the SI system defines the unit to be equal to the mass of the international prototype of the kilogram, which is made from an alloy of platinum and iridium of 39 mm height and diameter, and kept at the Bureau International des Poids et Mesures (International Bureau of Weights and Measures). Official copies of the prototype kilogram are made available as national prototypes, which are compared to the Paris prototype ("Le Grand Kilo") roughly every 10 years. The international prototype kilogram was made in the 1880s.

By definition, the error in the repeatability of the current definition is exactly zero; however, in the usual sense of the word, it can be regarded as of the order of 2 micrograms. This is found by comparing the official standard with its official copies, which are made of roughly the same materials and kept under the same conditions. There is no reason to believe that the official standard is any more or less stable than its official copies, thus giving a way to estimate its stability. This procedure is performed roughly once every forty years.

The international prototype of the kilogram seems to have lost about 50 micrograms in the last 100 years, and the reason for the loss is still unknown (reported in Der Spiegel, 2003 #26). The observed variation in the prototype has intensified the search for a new definition of the kilogram. Although it is accurate to state that all other objects in the universe have gained 50 micrograms per kilogram, this perspective is counterintuitive and defeats the purpose of a standard unit of mass.

Proposed future definitions

There is an ongoing effort to introduce a definition by way of fundamental or atomic constants. The proposals being worked on are:

gram << kilogram << megagram or Tonne

External links