Encyclopedia  |   World Factbook  |   World Flags  |   Reference Tables  |   List of Lists     
   Academic Disciplines  |   Historical Timeline  |   Themed Timelines  |   Biographies  |   How-Tos     
Sponsor by The Tattoo Collection
E6 (mathematics)
Main Page | See live article | Alphabetical index

E6 (mathematics)

In mathematics, E6 is the name of a Lie group and also its Lie algebra. It is one of the five exceptional simple Lie groups as well as one of the simply laced groups. ''E'\'6 has rank 6 and dimension 78. Its fundamental representation is 27-dimensional (complex).

In particle physics, E6 plays a role in some grand unified theories.

Table of contents
1 Algebra

Algebra

Dynkin diagram

Roots of E6

Although they span a six-dimensional space, it's much more symmetrical to consider them as vectors in a six-dimensional subspace of a nine-dimensional space.

(1,-1,0;0,0,0;0,0,0), (-1,1,0;0,0,0;0,0,0),

(-1,0,1;0,0,0;0,0,0), (1,0,-1;0,0,0;0,0,0),

(0,1,-1;0,0,0;0,0,0), (0,-1,1;0,0,0;0,0,0),

(0,0,0;1,-1,0;0,0,0), (0,0,0;-1,1,0;0,0,0),

(0,0,0;-1,0,1;0,0,0), (0,0,0;1,0,-1;0,0,0),

(0,0,0;0,1,-1;0,0,0), (0,0,0;0,-1,1;0,0,0),

(0,0,0;0,0,0;1,-1,0), (0,0,0;0,0,0;-1,1,0),

(0,0,0;0,0,0;-1,0,1), (0,0,0;0,0,0;1,0,-1),

(0,0,0;0,0,0;0,1,-1), (0,0,0;0,0,0;0,-1,1),

All 27 combinations of where is one of , ,

All 27 combinations of where is one of , ,

Simple roots

(0,0,0;0,0,0;0,1,-1)

(0,0,0;0,0,0;1,-1,0)

(0,0,0;0,1,-1;0,0,0)

(0,0,0;1,-1,0;0,0,0)

(0,1,-1;0,0,0;0,0,0)

Weyl/Coxeter group

Its Weyl/Coxeter group is symmetry group of the E6 polytope.

Cartan matrix

Exceptional Lie groups
E6 > E7 | E8 | F4 | G2