Classical mechanics
Classical mechanics is a model of the physics of forces acting upon bodies. It is often referred to as "Newtonian mechanics" after Newton and his laws of motion. Classical mechanics is subdivided into statics (which models objects at rest), kinematics (which models objects in motion), and dynamics (which models subjected to forces). See also mechanics.Classical mechanics produces very accurate results within the domain of everyday experience. It is superseded by relativistic mechanics for systems moving at large velocities near the speed of light, quantum mechanics for systems at small distance scales, and relativistic quantum field theory for systems with both properties. Nevertheless, classical mechanics is still very useful, because (i) it is much simpler and easier to apply than these other theories, and (ii) it has a very large range of approximate validity. Classical mechanics can be used to describe the motion of human-sized objects (such as tops and baseballs), many astronomical objects (such as planets and galaxies), and certain microscopic objects (such as organic molecules.)
Although classical mechanics is roughly compatible with other "classical" theories such as classical electrodynamics and thermodynamics, there are inconsistencies discovered in the late 19th century that can only be resolved by more modern physics. In particular, classical nonrelativistic electrodynamics predicts that the speed of light is a constant relative to an aether medium, a prediction that is difficult to reconcile with classical mechanics and which led to the development of special relativity. When combined with classical thermodynamics, classical mechanics leads to the Gibbs paradox in which entropy is not a well-defined quantity and to the ultraviolet catastrophe in which a black body is predicted to emit infinite amounts of energy. The effort at resolving these problems led to the development of quantum mechanics.
Description of the theory
In reality, the kind of objects which classical mechanics can describe always have a non-zero size. True point particles, such as the electron, are properly described by quantum mechanics. Objects with non-zero size have more complicated behavior than hypothetical point particles, because their internal configuration can change - for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. Such composite objects behave like point particles, provided they are small compared to the distance scales of the problem, which indicates that the use of point particles is internally consistent.
Position and its derivatives
The position of a point particle is defined with respect to an arbitrary fixed point in space, which is sometimes called the origin, O. It is defined as the vector r from O to the particle. In general, the point particle need not be stationary, so r is a function of t, the time elapsed since an arbitrary initial time. In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute in all reference frames.
Velocity
The velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time or
- .
Mathematically, if the velocity of the first object in the previous discussion is denoted by the vector v = vd and the velocity of the second object by the vector u = ue where v is the speed of the first object, u is the speed of the second object, and d and e are unit vectors in the directions of motion of each particle respectively, then the velocity of the first object as seen by the second object is:
- v' = v - u
- u' = u - v
- v' = ( v - u ) d
- v' = v - u
Acceleration
The acceleration, or rate of change of velocity, is the derivative of the velocity with respect to time or
- .
Frames of reference
- v' = v - u (the velocity of a particle from the perspective of S' is slower by u than from the perspective of S)
- a' = a (the acceleration of a particle remains the same regardless of reference frame)
- F' = F (since F = ma) (the force on a particle remains the same regardless of reference frame; see Newton's law)
- the speed of light is not a constant
- the form of Maxwell's equations is not preserved across reference frames
Forces; Newton's second law
Newton's second law relates the mass and velocity of a particle to a vector quantity known as the force. If m is the mass of a particle and F is the vector sum of all applied forces (i.e. the net applied force, Newton's second law states that
- .
Newton's second law is insufficient to describe the motion of a particle. In addition, it requires a value for F, obtained by considering the particular physical entities with which the particle is interacting. For example, a typical resistive force may be modelled as a function of the velocity of the particle, for example:
- .
Important forces include the gravitational force and the Lorentz force for electromagnetism. In addition, Newton's third law can sometimes be used to deduce the forces acting on a particle: if it is known that particle A exerts a force F on another particle B, it follows that B must exert an equal and opposite reaction force, -F, on A.
Energy
If the mass of the particle is constant, and δW_{total} is the total work done on the particle, obtained by summing the work done by each applied force, from Newton's second law:
- ,
- .
A particular class of forces, known as conservative forces, can be expressed as the gradient of a scalar function, known as the potential energy and denoted V:
- .
- .
Further results
Newton's laws provide many important results for composite bodies. See angular momentum.
There are two important alternative formulations of classical mechanics: Lagrangian mechanics and Hamiltonian mechanics. They are equivalent to Newtonian mechanics, but are often more useful for solving problems. These, and other modern formulations, usually bypass the concept of "force", instead referring to other physical quantities, such as energy, for describing mechanical systems.
Example
The space-time coordinates of an event in Galilean-Newtonian relativity are governed by the set of formulas which defines a group transformation known as the Galilean transformation:
Assuming time is considered an absolute in all reference frames, the relationship between space-time coordinates in reference frames differing by a relative speed of u in the x direction (let x = ut when x' = 0) is:
- x' = x - ut
- y' = y
- z' = z
- t' = t
History
The Greeks, and Aristotle in particular, were the first to propose that there are abstract principles governing nature.
One of the first scientists who suggested abstract laws was Galileo Galilei who may have performed the famous experiment of dropping two cannon balls from the tower of Pisa. (The theory and the practice showed that they both hit the ground at the same time.) Though the reality of this experiment is disputed, he did carry out quantitative experiments by rolling balls on an inclined plane; his correct theory of accelerated motion was apparently derived from the results of the experiments.
Sir Isaac Newton was the first to propose the three laws of motion (the law of inertia, his second law mentioned above, and the law of action and reaction), and to prove that these laws govern both everyday objects and celestial objects.
Newton also developed the calculus which is necessary to perform the mathematical calculations involved in classical mechanics.
After Newton the field became more mathematical and more abstract.
See also
- Edmund Halley -- List of equations in classical mechanics
- important publications in classical mechanics
Further reading
- Feynman, Richard Phillips, Six Easy Pieces. ISBN 0201408252
- Feynman, Richard Phillips, and Roger Penrose, Six Not So Easy Pieces. March 1998. ISBN 0201328410
- Feynman, Richard Phillips, Lectures on Physics. ISBN 0738200921
- Kleppner, D. and Kolenkow, R. J., An Introduction to Mechanics, McGraw-Hill (1973). ISBN 0070350485
External links
- Rosu, Haret C., "Classical Mechanics". Physics Education. 1999. [arxiv.org : physics/9909035]
- Horbatsch, Marko, "Classical Mechanics Course Notes".
- Sussman, Gerald Jay & Wisdom, Jack (2001). Structure and Interpretation of Classical Mechanics
General subfields within physics | Edit |
Classical mechanics | Condensed matter physics | Continuum mechanics | Electromagnetism | General relativity | Particle physics | Quantum field theory | Quantum mechanics | Solid state physics | Special relativity | Statistical mechanics | Thermodynamics |